
273

Verifying Indistinguishability of Privacy-Preserving
Protocols

KIRBY LINVILL, University of Colorado Boulder, USA

GOWTHAM KAKI, University of Colorado Boulder, USA

ERIC WUSTROW, University of Colorado Boulder, USA

Internet users rely on the protocols they use to protect their private information including their identity

and the websites they visit. Formal veri�cation of these protocols can detect subtle bugs that compromise

these protections at design time, but is a challenging task as it involves probabilistic reasoning about random

sampling, cryptographic primitives, and concurrent execution. Existing approaches either reason about

symbolic models of the protocols that sacri�ce precision for automation, or reason about more precise

computational models that are harder to automate and require cryptographic expertise. In this paper we

propose a novel approach to verifying privacy-preserving protocols that is more precise than symbolic models

yet more accessible than computational models. Our approach permits direct-style proofs of privacy, as opposed

to indirect game-based proofs in computational models, by formalizing privacy as indistinguishability of

possible network traces induced by a protocol. We ease automation by leveraging insights from the distributed

systems veri�cation community to create sound synchronous models of concurrent protocols. Our veri�cation

framework is implemented in F* as a library we callWaldo. We describe two large case studies of usingWaldo

to verify indistinguishability; one on the Encrypted Client Hello (ECH) extension of the TLS protocol and

another on a Private Information Retrieval (PIR) protocol. We uncover subtle �aws in the TLS ECH speci�cation

that were missed by other models.

CCS Concepts: • Security and privacy→ Formal security models; Logic and veri�cation; Information-

theoretic techniques; Security protocols; • Theory of computation→ Automated reasoning; Logic and

veri�cation; Programming logic; Equational logic and rewriting.

Additional Key Words and Phrases: Protocol Veri�cation, Indistinguishability, Privacy, Concurrency, Synchro-

nization

ACM Reference Format:

Kirby Linvill, Gowtham Kaki, and Eric Wustrow. 2023. Verifying Indistinguishability of Privacy-Preserving

Protocols. Proc. ACM Program. Lang. 7, OOPSLA2, Article 273 (October 2023), 28 pages. https://doi.org/10.

1145/3622849

1 INTRODUCTION

Privacy is an increasingly serious concern on the internet. Exposing users’ sensitive data to a third
party on the internet makes them susceptible to impersonation, censorship, and o�ine harm. To
counter this threat, several communication and information retrieval protocols have been proposed
that o�er various guarantees pertaining to the privacy of the communicating parties. The key
technology underlying most such protocols is cryptographic encryption. For instance, Transport
Layer Security (TLS) is a secure communication protocol that encrypts an application’s TCP tra�c

Authors’ addresses: Kirby Linvill, kirby.linvill@colorado.edu, University of Colorado Boulder, USA; GowthamKaki, gowtham.

kaki@colorado.edu, University of Colorado Boulder, USA; Eric Wustrow, ewust@colorado.edu, University of Colorado

Boulder, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART273

https://doi.org/10.1145/3622849

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-8835-3377
HTTPS://ORCID.ORG/0000-0002-4189-3189
HTTPS://ORCID.ORG/
https://doi.org/10.1145/3622849
https://doi.org/10.1145/3622849
https://orcid.org/0000-0001-8835-3377
https://orcid.org/0000-0002-4189-3189
https://orcid.org/
https://doi.org/10.1145/3622849

273:2 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

to prevent a prying observer from learning anything about the information being exchanged. TLS
was famously used to extend HTTP with encrypted communications, resulting in the HTTP over
TLS (HTTPS) protocol, which has now emerged as the standard for secure communications on the
world-wide web [U.S. CIO Council 2016; W3C Technical Architecture Group 2021].

Encryption, however, does not automatically confer the bene�ts of privacy. Communication
protocols often involve complex control �ows composed of multiple message exchanges between
communicating parties. Even if individual messages are securely encrypted, a sequence of message
exchanges induced by a sensitive control �ow might still leak private information. Furthermore,
encryption itself might be weakened due to violations of hyperproperty pre-conditions, such as
reuse of keys and nonces. Consequently, composing secure cryptographic primitives does not
necessarily lead to a secure protocol. Indeed, researchers have uncovered several vulnerabilities
against previous versions of TLS that exploit the subtle impact of legacy protocol support [Aviram
et al. 2016; Möller et al. 2014], complex control �ows [Al Fardan and Paterson 2013; Beurdouche
et al. 2017; Bhargavan et al. 2014], and the lengths of messages [Rizzo and Duong 2012] to leak
sensitive information to an attacker.

Formal veri�cation has the potential to uncover critical vulnerabilities in speci�cations and im-
plementations of secure communication protocols. The task is challenging, however, as it involves
reasoning about pseudo-random functions (PRFs) and cryptographic primitives that make up a
secure communication protocol such as TLS. There are currently two major approaches to formal
veri�cation. The �rst approach involves reasoning about protocol speci�cations while the second
involves reasoning about protocol implementations. Formal veri�cation of speci�cations estab-
lishes correctness and security of a protocol in principle. Formal veri�cation of implementations
establishes the correctness and security of the implementation, such as the implementation of
HTTPS within a particular web browser or web server. Though we focus on formal veri�cation of
protocol speci�cations in this paper, our libraryWaldo can be connected to network, encryption,
and random sampling implementations to create a functional implementation.

Reasoning about cryptographic protocol speci�cations is typically done by either reasoning about
symbolic or computational models. Symbolic models are often reasoned about in the framework of
Dolev-Yao [Dolev and Yao 1983], where messages are represented as terms, PRFs and cryptographic
primitives are assumed to guarantee perfect randomness and secrecy (resp.), and these assumptions
are encoded as axioms in a �rst-order logic. Security properties are expressed as queries on the
ability of an attacker to fully obtain a secret using an equational theory that models the attacker’s
capabilities. Unfortunately, the symbolic model lacks precision due to its use of deterministic
�rst-order models to overapproximate the probabilistic guarantees of PRFs and cryptographic
primitives. While �rst-order modeling lends itself to automatic reasoning, overapproximating the
guarantees from the environment leads to imprecise conclusions (false proofs of inviolability)
which may not be valid in practice. As an example, consider a simple communication protocol
that encrypts a message together with its sender ID before sending out the encrypted ciphertext.
The protocol might want to keep the sender information private to avoid selective censorship. In
ProVerif [Blanchet et al. 2016], a veri�cation tool based on the Dolev-Yao model, one can query if
an attacker can observe the di�erence between the ciphertexts enc((<, B1), :) and enc((<, B2), :),
where B1 and B2 are senders sending the same message<, enc is a perfect encryption scheme, and
: is the key used for encryption. ProVerif answers the query negatively, meaning that it should be
impossible for an attacker to observe the di�erence between the two because enc((<, B1), :) and
enc((<, B2), :) are symbolically equivalent; both are distinct bitstrings produced from a perfect
encryption scheme. In practice however, the two ciphertexts have di�erent lengths depending on
the length of the sender �eld, thus leaking the identity of the sender as illustrated in Fig. 1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:3

Encrypting message {msg: "This is a test message"; sender: "Alice"}

Encrypted message: OY31M...f4zbe, Length: 30

Encrypting message {msg: "This is a test message"; sender: "Charlie"}

Encrypted message: O4n9I...bqn3e, Length: 32

Fig. 1. Example encrypted messages with the same content from two di�erent senders. The encrypted length

varies based on the combined length of the message and sender thereby potentially leaking the identity of

the sender.

The overapproximation problem of the symbolic model is recti�ed in the computational model of
cryptography, which explicitly models the probability of the failure of an encryption scheme in
the presence of a polynomially-bounded adversary. Security properties in this model are typically
expressed using simulated sessions (i.e., games) with an adversary. The demonstration of the
inability of the attacker to gain access to the secret in this simulated game with less than a bounded
probability n is a game-based proof of protocol’s inviolability. The precise nature of reasoning in the
computational model eliminates false proofs of safety. For instance, CryptoVerif [Blanchet 2008], a
veri�cation tool based on the computational model, correctly identi�es the problem described in
Fig. 1. The gain in precision, however, is o�set by the loss in automation as game-based proofs in
the computational model often require non-trivial human insight to reduce the game to a known
cryptographic assumption. Furthermore, various games can be setup depending on the abilities
of the attacker and the required security guarantees. For instance, a game modeling a Chosen
Plaintext Attack (CPA) adversary allows the attacker to choose a series of plaintexts to be encrypted
by the challenger and observe the corresponding ciphertexts. A variation of a CPA adversary, called
Adaptive CPA, allows the attacker to adapt its choices of plaintext based on the ciphertexts observed
so far. It is incumbent on the protocol designer to set up an appropriate adversary and game whose
proof of inviolability guarantees the protocol’s real-world safety. This makes the computational
model inaccessible to anyone who is not an expert in cryptography.

Reasoning about the low-level implementations of security protocols is often done in a general
purpose theorem prover such as Coq [Team 2023] or F* [Swamy et al. 2016]. Having access to the full
generality of a theorem prover allows one to pick elements from the symbolic and computational
models and compose them in a way that suits the assumptions and requirements of the veri�cation
task at hand. The expressive power of the higher-order logic lets one state security properties directly
as probabilistic assertions and construct direct proofs of safety instead of indirect game-based proofs.
Moreover, successful veri�cation yields a veri�ed executable that can be immediately deployed.
On the �ip side, however, building formal proofs of correctness for low-level implementations in
a higher-order proof system such as Coq’s CIC [Bertot and Castran 2010] is extremely hard and
labor-intensive. For instance, the end-to-end veri�cation of only part of TLS 1.3, the record layer,
in F* required roughly 12,000 lines of annotations and required signi�cant e�ort from experts in
formal methods, security, and cryptography [Delignat-Lavaud et al. 2017]. Such expertise and e�ort
is clearly out of reach for an average application developer who might want to verify a high-level
implementation of a protocol but is not necessarily interested in end-to-end veri�cation guarantees.

In this paper we propose an alternative approach to verifying privacy-preserving communication
protocols in the presence of a passive attacker that brings together the virtues of the aforemen-
tioned approaches into a uni�ed reasoning framework called Waldo. Our approach admits direct
speci�cation of privacy properties as indistinguishability assertions, which assert the observational

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:4 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

equivalence of protocol traces at the level of their distributions rather than individual traces. Cryp-
tographic primitives like encryption are modeled using similar perfect secrecy assumptions as
in the symbolic model to ease automation, but messages are modeled as bytestrings to preserve
precision just like in computational model tools. Like previous approaches, Waldo operates on
the high-level executable speci�cations of protocols expressed in a bespoke DSL, which can be
linked with trusted network and I/O libraries to yield an executable implementation. Waldo’s
semi-automated reasoning helps developers build direct proofs of privacy by relating distributions
of traces generated in distinct runs of the protocol. Waldo relies on Probabilistic Relational Hoare
Logic (pRHL) [Barthe et al. 2009] to drive this reasoning. pRHL is a relational program logic for rea-
soning about relational properties of sequential probabilistic programs. In contrast, protocols such
as TLS are concurrent programs with multiple communicating processes. A notable contribution of
our approach is to bridge this gap by borrowing techniques from distributed systems veri�cation.
In particular, we take inspiration from Lipton’s theory of movers [Lipton 1975; v. Gleissenthall et al.
2019] to soundly reduce a composition of concurrent communicating processes to an equivalent
sequential program. Lipton’s reduction guarantees equivalence of original and reduced programs up
to the observable states. Since indistinguishability requires equivalence up to observable traces, we
generalize Lipton’s reduction by adopting a more conservative approach to identifying movers. We
present our variant of Lipton’s reduction in Sec. 3. Another distinguishing aspect of our approach is
its ability to “factor out” non-determinism into a (small) pre�x of the program, allowing equational
reasoning to be used to reason about the (large) su�x. This transformation allowsWaldo, which is
implemented as a library in F*, to bring to bear F*’s formidable proof automation to prove privacy
properties of protocols.

Contributions. Our contributions are summarized thus:

• We propose a new approach to verifying privacy-preserving communication protocols that
allows for direct speci�cations using indistinguishability assertions. Our model captures
�ner-grained information than the symbolic model, while often adopting similar perfect
secrecy assumptions to make protocols easier to specify and verify than the computational
model.
• We introduce a DSL for specifying privacy-preserving protocols, proof rules for establish-
ing indistinguishability, and a sound reduction of concurrent probabilistic processes to an
equivalent sequential probabilistic program (Sec. 3 and Sec. 4).
• We implement the DSL and semi-automated proof system as a library in F* known asWaldo

(Sec. 5).
• We use Waldo to verify privacy properties for two important protocols as case studies:
(1) Transport Layer Security (TLS) Encrypted Client Hello (ECH) [Rescorla et al. 2022], an

extension to a key component of today’s internet infrastructure that can fail to meet its
security goals due to insu�cient padding and extension orderings that were not uncovered
by previous models (Sec. 6).

(2) A Private-Information Retrieval (PIR) scheme from [Chor et al. 1998] in which a user
retrieves a record from a set of databases without revealingwhich record they requested (Sec.
7). PIR is closely related to other important privacy-preserving protocols including secret-
sharing schemes [Beimel et al. 2012; Shamir 1979] and multiparty computation [Beimel
et al. 2012].

2 KEY IDEAS

We illustrate the challenges with verifying privacy properties and our key ideas to overcome these
challenges using the simple protocol shown in Fig. 2a. The protocol is expressed using the cF

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:5

language introduced in Sec. 3 with minor alterations for clarity. The protocol uses One-Time Pad
(OTP) encryption, which is a symmetric encryption scheme1 that works by exclusive or-ing (xor-ing,
⊕) a message< with a key : that is at least as long as the message. The original message can be
recovered by xor-ing the ciphertext with the same key since (< ⊕ :) ⊕ : = < ⊕ (: ⊕ :) = <. In
isolation, OTP is a perfect encryption scheme; it guarantees perfect secrecy of the input message
as long as it is encrypted with a key of the same length. For a sequence of messages, i.e., a trace,
however, OTP might subtly leak information as demonstrated by the protocol in Fig. 2a.
The protocol �rst generates a shared key (key) for use by both the client and server. The key

is generated by sampling one byte from the uniform distribution (unif_samp 1). This protocol
assumes both the messages and the key are a single byte for simplicity, but our approach applies
to bytestrings in general. The client then encrypts its message (m1) by xor-ing the message with
the shared key. It then sends the server the resulting encrypted message. The server receives
and decrypts the message, encrypts its response (m2) using the same shared key, and sends the
encrypted response to the client. Finally, the client decrypts the message it receives from the server.
The protocol is parameterized on the messages m1 and m2 which should remain secret against an
external observer.

A protocol guarantees perfect secrecy if an attacker can learn no information about secret inputs
from the trace of network activity between the protocol participants. The secret inputs in the
protocol shown in Fig. 2a are the messages m1 and m2 while the network trace always consists of
the encrypted messages enc1 and enc2. Perfect secrecy trivially holds if the network traces are
identical for all secret inputs. This is in general impossible as the content of messages often depends
on the inputs. We therefore consider statistical identity instead of pair-wise identity. Intuitively,
an attacker can learn nothing about the secret inputs by observing the traces if the likelihood
of a trace being generated by the protocol is the same regardless of its secret inputs. In other
words, the protocol guarantees perfect secrecy if the probability distribution of traces generated
by the protocol is independent of its secret inputs. We call this property indistinguishability as
it requires the traces resulting from distinct secret inputs be statistically indistinguishable. Note
that indistinguishability does not constrain the concrete probability distributions of traces; it only
requires that the distributions be equal regardless of secret inputs. For example, a protocol that
simply sends out a random value sampled from a �xed distribution guarantees indistinguishability
regardless of the distribution as the attacker learns nothing about the secret inputs by observing the
network traces.

Despite OTP being a perfect encryption scheme, the protocol in Fig. 2a fails to preserve perfect
secrecy, which can be shown as a violation of indistinguishability. The violation occurs because
the generated network trace consists of the values m1 ⊕ key and m2 ⊕ key. An observer could
simply xor these two values together to get m1 ⊕ key ⊕ m2 ⊕ key which, due to the commutative
and inverse properties of xor, reduces to m1 ⊕ m2. This result leaks information about the secret
input such as which bits of the response m2 are the same as the initial message m1. Consequently,
the traces generated by the protocol for di�erent sets of messages are distinguishable. The root
cause of this violation is the reuse of keys, which breaks the assumptions of OTP encryption. The
protocol can be �xed by generating two shared keys instead of one, and using them to exclusively
to encrypt m1 and m2 respectively as shown in the functional model in Fig. 3. The �xed protocol
ensures that all possible network traces are equally likely regardless of the secret inputs, thus
restoring indistinguishability.

While the above informal argument appeals to the intuition, formally proving indistinguishabil-
ity, even for this simple protocol, is challenging. Firstly, secure communication protocols involve

1A symmetric encryption scheme is one where both the communicating parties use the same encryption key.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:6 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

let enc1 = m1 ⨁ key in

let _ = send server enc1 in

let enc2 = recv in

enc2 ⨁ key

let enc1 = recv in

let dec1 = enc1 ⨁ key in

let enc2 = m2 ⨁ key in

send client enc2
||

Client Server

let key = unif_samp 1 in

Shared

(a) Example protocol with concurrent client and server processes.

let key = unif_samp 1 in

let c_enc1 = c_m1 ⨁ key in

(trace (c,s,c_enc1))

>>= (! _.

 let s_enc1 = c_enc1 in

 let s_dec1 = s_enc1 ⨁ key in

 let s_enc2 = s_m2 ⨁ key in

 (trace (s,c,s_enc2))

>>= (! _.

 let c_enc2 = s_enc2 in

 let c_msg2 = c_enc2 ⨁ key in

 return ()))

(b) Sequential model of the protocol.

Fig. 2. Example protocol (2a) and sequential model (2b). The protocol uses One-Time Pad encryption but

subtly leaks information by re-using the shared key. The protocol is parameterized on the secret messages m1

and m2. The sequential model uses a monad that keeps track of the network trace. Random sampling is not

yet determinized in this model.

multiple sources of non-determinism, including concurrency and random sampling, which are di�-
cult to reason about. Secondly, indistinguishability is a stochastic property requiring probabilistic
reasoning that is hard to automate. Existing approaches at verifying protocol implementations
typically use imprecise models that miss trivial information leaks or require the developer to deal
with the full generality of these challenges in the context of a theorem prover, which requires
considerable expertise in cryptography and a substantial proof e�ort [Delignat-Lavaud et al. 2017].
See Sec. 8 for a more detailed comparison against current approaches.

(next 1 Γ) >>= (" key1.

(next 1 Γ) >>= (" key2.

let c_enc1 = c_m1 ⨁ key1 in

(trace (c,s,c_enc1)) >>= (" _.

let s_enc1 = c_enc1 in
let s_dec1 = s_enc1 ⨁ key1 in

let s_enc2 = s_m2 ⨁ key2 in

(trace (s,c,s_enc2)) >>= (" _.

let c_enc2 = s_enc2 in
let c_msg2 = c_enc2 ⨁ key2 in

return ()))))

 a | b | c | …Γ

 m1 ⨁ a #1

 m1 ⨁ a | m2 ⨁ b #2 m1’ ⨁ a | m2’ ⨁ b

 m1’ ⨁ a

m1=m1, m2=m2

Secret Input 1 Secret Input 2

m1=m1’, m2=m2’

Fig. 3. Symbolic traces for two di�erent runs of the fixed OTP-

based protocol with di�erent secret inputs. Proving indistinguisha-

bility requires a bijection on the tape Γ that results in equivalence

of the final traces. The protocol model uses a monad that tracks

both the network trace and random tape to fully determinize

execution.

In this paper, we adopt an alterna-
tive approach to verifying indistin-
guishability that addresses the afore-
mentioned complexity by system-
atically reducing concurrent proto-
col implementations �rst to sequen-
tial models with random sampling
and then to deterministic monadic
functional programs. The reduction
makes the protocol amenable to equa-
tional reasoning and type-based tech-
niques which are easier to automate
using existing tools. We illustrate this
idea on the running example. Our
�rst observation is that, although the
protocol in Fig. 2a is a concurrent pro-
gramwith asynchronous communica-
tion, we can soundly assume the com-
munication to be synchronous when
reasoning about the program. This is because the client’s send matches with exactly one recv
in the server and vice-versa. Moreover, because recvs are blocking, there are no racing commu-
nication actions; the latter communication is blocked until the former concludes. Thus, we can
soundly model this protocol using the synchronized model shown in Fig. 2b. The sequential model
uses a monad that tracks the network trace. ≫= is the monadic bind operator while trace is a
monadic function that records a message in the network trace. When reducing from the protocol

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:7

to the sequential model, sends are replaced with trace calls and recvs are replaced with the value
of the corresponding message. Variables within each process are renamed to avoid clashes. For
example, the enc1 variable in the client process is renamed to c_enc1 to avoid clashing with the
variable in the server process with the same name. This sequential model can be checked for
indistinguishability by examining the network traces produced by running the model with an
empty initial trace.

Though the sequential model eliminates scheduling non-determinism, verifying indistinguisha-
bility for this model still requires reasoning about non-determinism from random sampling. To
manage this complexity we reify random sampling as reading from a tape as in the model in Fig.
3. Speci�cally, unif_samp = calls are rei�ed to next calls that simply return the next = unread
elements from a tape Γ. For example, given the tape Γ and sequential model shown in Fig. 3, the
�rst element of the tape (a) would be bound as key1, while the second element of the tape (b)
would be bound as key2. The elements on the tape are expected to be independently drawn from
the same distribution that random sampling would draw from. In this way, randomness is factored
out of the program and into the tapes.
With this deterministic formulation of randomness, we can then apply rules derived from

Probabilistic Relational Hoare Logic (pRHL) [Barthe et al. 2009] to reason about probabilistic
equivalence of our sequential model. Speci�cally, we apply rules detailed in Sec. 4 to show that the
probability of producing a given trace is equivalent for all choices of secret messages m1 and m2.
Showing probabilistic equivalence using pRHL requires a suitable bijection on the random tape.
The bijection is used to show that for any particular tape that could be sampled, there is an equally
likely tape that could be sampled for which running the deterministic program with the �rst set of
secret inputs (m1 and m2) on the original tape produces the same trace as running the deterministic
program with the second set of secret inputs (m1′ and m2′) on the bijected tape. When this holds
for all possible tapes and for all possible sets of secret inputs, then the bijection shows probabilistic
equivalence. When considering a passive attacker, probabilistic equivalence means that any set of
secret inputs is equally likely to have produced a given trace. Therefore the attacker cannot infer
any information about the secret inputs and the protocol provides indistinguishability.
To determine a suitable bijection for this example we �rst look at two di�erent runs of the

�xed program, which uses a di�erent key for each encryption, with the initial tape Γ and pairs of
secret messages (m1, m2) and (m1′, m2′) respectively as shown in Fig. 3. The traces (g) and inputs
corresponding to each run are color-coded to make them easier to distinguish. A su�cient bijection
to prove indistinguishability must ensure that the �nal traces, in this case the traces at g2, must be
equivalent. The elements in the traces di�er in terms of which message is encrypted. As a result,
a suitable bijection must ensure that m1 ⊕ a = m1′ ⊕ � and that m2 ⊕ b = m2′ ⊕ � where a and b

are the �rst and second elements from the original tape while � and � are the �rst and second
elements from the bijected tape. This holds if � = m1′ ⊕ m1 ⊕ a and if � = m2′ ⊕ m2 ⊕ b. A suitable
bijection therefore could be a function parameterized on the secret inputs m1, m2, m1′, and m2′

that only permutes the �rst two elements of the tape by replacing them with m1′ ⊕ m1 ⊕ a and
m2′ ⊕ m2 ⊕ b respectively where a and b are the �rst and second elements of the tape. Note that
in the case of the broken protocol which uses the same key (a in this case) for both encryptions,
proving probabilistic equivalence would require a bijection that ensures that � = m1′ ⊕ m1 ⊕ a and
� = m2′ ⊕ m2 ⊕ a. There is no such function that can provide this for all m1, m2, m1′, and m2′ so it is
(correctly) impossible to use our rules to verify probabilistic equivalence for the broken protocol.

As it turns out, the bijection required to verify the �xed protocol is common for protocols that
use OTP encryption. Our libraryWaldo provides a generic form of this bijection (bij_otp in Fig.
9), along with bijections for other common models of encryption, that can be used out-of-the-box.
Waldo further provides support for implementing the model using a monad that tracks the network

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:8 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

trace and random tape, as well as support for specifying and proving indistinguishability lemmas.
Specifying and proving indistinguishability for protocols that can use Waldo’s bijections is as
simple as the example in Fig. 9 where indistinguishable_ensures generates a post-condition for
indistinguishability for the protocol while indistinguishable_lemma applies the relevant proof rules
given the suitable bijection. See Sec. 5 for more details aboutWaldo’s implementation and interface.
Waldo is written in F* [Swamy et al. 2016], a dependently-typed language with an OCaml-like
syntax that can be used to specify and prove properties about programs. F* sends queries to the Z3
SMT solver to discharge proofs by default. Since the lemma shown in Fig. 9 references a suitable
bijection, F* and Z3 successfully verify the lemma without further facts. In this way, verifying
indistinguishability is mostly automatic given a suitable bijection, much as sequential program
veri�cation can be mostly automatic given suitable loop invariants.

The simple example in this section shows that we handle non-determinism from concurrency
through synchronizing the protocol to extract a sound sequential model. It also shows that we
handle non-determinism from random sampling by reifying sampling to reading from a tape and
by applying rules derived from pRHL. However, not all programs can be soundly synchronized
and most are not as trivial to synchronize. Sec. 4 de�nes what is a sound synchronization and
introduces rules for computing such a synchronization in the presence of potentially racing sends
and branching control �ow. The example presented in this section uses OTP encryption which
is a simple xor operation that guarantees perfect secrecy as long as the key is never reused. In
contrast, most practical cryptographic primitives o�er computational secrecy, where a polynomial
adversary may be able to distinguish between secret inputs but with a negligibly low probability.
Unfortunately, precisely modeling computational secrecy assumptions dramatically increases the
complexity of reasoning and e�ort required to discharge proof obligations. Tools like Proverif
overcome this problem by overapproximating computational secrecy with perfect secrecy [Blanchet
et al. 2016]. In other words, practical cryptographic primitives are assumed to provide perfect
secrecy. While these assumptions are stronger than more realistic computational assumptions, this
approach is nonetheless useful as failing to verify properties under ideal assumptions often exposes
�aws in the protocol that are also present under weaker, more realistic assumptions. Furthermore,
less e�ort is typically required to verify properties under these kinds of ideal assumptions. We adopt
this approach, but generalize it by letting one control the extent of overapproximation between
the extremes of symbolic (perfect) secrecy and computational secrecy. For instance, a typical
block encryption scheme can be modeled starting with a pair of functions (4=2, 342) that satisfy
the equation 342 (4=2 (<,:), :)) = <, where< is the message and : is the key. To this symbolic
model, we add a probabilistic assertion that states that 4=2 (<,:) returns a byte string of length |< |
from a probability distribution that is independent of<. Note that this is an overapproximation
considering that practical encryption schemes do not guarantee the independence of ciphertext
content from the message content. However, since the approximation is more precise than simply
assuming perfect secrecy, speci�cally by capturing the length |< | of an encrypted message, it
allows for identifying additional protocol-level secrecy violations such as the one shown in Fig. 1.
The approximation can be further re�ned by specifying the length, content, or the probability
distribution of the ciphertexts. We thus capture the stochastic nature of cryptographic primitives
without fully committing ourselves to the computational model. Such practical aspects of our
approach, along with the implementation details ofWaldo, are discussed in Sec. 5. We subsequently
describe our experience of usingWaldo to verify two more complicated protocols: TLS ECH in
Sec. 6 and a Private Information Retrieval scheme in Sec. 7.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:9

3 FORMALISM

In this section we formalize our ideas in the context of a probabilistic process calculus called cF .
We then formalize the notion of indistinguishability for cF programs.

3.1 cF : Syntax and Operational Semantics

The syntax for cF is given in Fig. 4. A cF program is a parallel composition of processes that
communicate viamessage passing. A process is a command (2) or a sequence of commands composed
using let. Commands include the send and recv primitives for message passing and a samp

primitive to sample from a distribution. Commands can be chosen between using the if then

else command. The identi�er 8 of a process 28 uniquely identi�es it among its peers. Name binding
is done via let. let commands are de�ned to only allow inner commands that cannot be nested (<).
Expressions include a unit value (()), bytestrings (B), booleans (;), tuples ((E, E)) and their projections
(fst, snd), and user-de�ned operations (5). The �rst four constitute the syntactic class of values.
Bytestrings are chosen as the core value since messages in an actual program are typically sent
between processes as bytestrings. The language is parameterized on the set 5 : E → E , which could
include, for example, a bit-wise xor (⊕) operation that operates on two bytestrings and returns a
bytestring. The parallel composition is assumed to be commutative and associative, so 21 ∥ 22 ∥ 23
is the same program as 22 ∥ 23 ∥ 21.

1 ∈ Bytes G ∈ Variables 8, 9 ∈ Process Ids 5 ∈ Bytestring Ops ; ∈ B
B ∈ Bytestrings F 1 | 1 :: B

E ∈ Values F B | ; | () | (E, E)
4 ∈ Expressions F E | G | 5 4 | fst 4 | snd 4
< ∈ SingleCommands F 4 | samp | send 8 4 | recv
2 ∈ Commands F < | if 4 then 21 else 22 | let G =< in 2

% ∈ Processes F 28 | 28 ∥ %
c ∈ Programs F let G = 2 in c | %

Fig. 4. cF syntax.

The operational semantics of cF is de�ned in Fig. 5 using two small-step reduction relations,
one for the commands (−→) and other for the programs (−↠). We use the notation 28 and [2]8
interchangeably to represent the command 2 executing in process 8 . The relations relate execution
states f and commands 28 or programs c . An execution state f is a tuple of a trace g , tapes Γ and X
of random bytes, and a map" that maps process identi�ers to their message queues. The trace g
records communication events of the form (E, 8, 9) capturing a message E being sent from process
8 to 9 . The trace models what an external observer can see from communicating processes since
indistinguishability is de�ned with respect to such an observer. Concurrent small-step executions
often make non-deterministic choices about what processes to reduce next. The scheduling non-
determinism, in addition to the non-determinism induced by probabilistic constructs such as samp,
makes it hard to reason about the relative likelihood of manifesting traces, which is necessary
to show indistinguishability of executions. Our operational semantics circumvents this di�culty
by reifying non-deterministic choices of sampling and scheduling as a deterministic reads from
input tapes Γ and X of random bytes, respectively. The tapes Γ and X are assumed to have been
sampled from the distributions �Γ and �X that are obtained by lifting an unspeci�ed distribution
on individual elements to the tapes (lists) of such elements. To ensure a non-zero probability of
sampling a particular tape, tapes Γ and X are assumed to be of �nite but unspeci�ed length L. Note
that by appropriately choosing �X , one can obtain an adversarial scheduler that prefers one process

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:10 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

over the other. Modeling scheduling non-determinism as probabilistic choice lets us compute the
probability of manifesting a trace as a function of the distribution on the tape X . This in turn
helps us formalize indistinguishability (Def. 3.2) precisely, and also show that our approach to
synchronization does not change the probability of manifesting a particular trace (Theorem 4.3).

f c −↠ f ′ c ′ f 28 −→ f ′ 2 ′8

g ∈ Traces F [] | (E, 8, 9) :: g Γ, X ∈ Tapes F [] | 1 :: Γ

< ∈ Msg. Queue F [] | E ::< " ∈ Msg. Queues F 8 ↦→<

X = 8 :: X ′ (g, Γ, X ′, ") 28 −→ f ′ 2 ′8

(g, Γ, X, ") 28 ∥ % −↠ f ′ 2 ′8 ∥ %
E-Cong

X = 8 :: X ′ �f ′. (g, Γ, X ′, ") 28 −→ f ′ 2 ′8

(g, Γ, X, ") 28 ∥ % −↠ (g, Γ, X
′, ") 28 ∥ %

E-Refl

" [9] = @ " ′ = " [9 ↦→ @ ++ [E]]

(g, Γ, X, ") [send 9 E]8 −→ ((E, 8, 9) :: g, Γ, X, "
′) [()]8

E-Send

" [8] = E :: @ " ′ = [8 ↦→ @]

(g, Γ, X, ") [recv]8 −→ (g, Γ, X, "
′) [E]8

E-Recv
Γ = 1 :: Γ

′

(g, Γ, X, ") [samp]8 −→ (g, Γ
′, X, ") [1]8

E-Samp

f [let G = E in 2]8 −→ f [2 [E/G]]8
E-Let

f [if true then 21 else 22]8 −→ f [21]8
E-IfTrue

Fig. 5. cF operational semantics. Congruence and tuple projection rules are omi�ed for brevity.

The E-Cong rule of Fig. 5 shows how the tape X is used to pick the process to execute next.
Tape X is assumed to be a stream of process ids instead of bytestrings to simplify presentation.
In reality the semantics needs to be parameterized on a function choose that maps bytestrings
to process Ids. The randomly chosen process 28 may not be able to take a step if it is waiting on
a message or if is already a value. In such case E-Refl allows skipping 28 and move on to the
next choice from X . Sampling a byte via samp corresponds to reading the next byte from the tape
Γ (E-Samp). Sending (resp. receiving) messages involves appending to (resp. reading from) the
message queue as shown by E-Send (resp. E-Recv). The E-Send rule appends the send event to the
trace signifying its external observability. Note that the trace grows monotonically capturing the
monotonicity of externally visible observations. The E-Recv rule for a given process only applies
when there is a message in the queue for that process thereby modeling blocking recvs. Together,
send and recv primitives model reliable communication. This re�ects the choice made by many
privacy-preserving protocols in practice, including the protocols in our case studies, which rely on
reliable communication (TCP) and blocking recvs. The reduction rules for let and if are standard.
Non-zero and zero bytestrings are interpreted as true and false values respectively. For brevity,
we omit all congruence and tuple projection rules.

As a result of factoring out non-determinism into tapes, the execution is deterministic. We de�ne
an execution of a cF program as its multistep reduction (−↠∗) to a value. To focus on execution
traces, we overload the notation to write ([], Γ, X, ∅) c −↠∗ g i� there exist Γ′, X ′, " , and E such
that ([], Γ, X, ∅) c −↠∗ (g, Γ′, X ′, ") E . The determinism of execution is stated thus:

Theorem 3.1 (Deterministic Execution of cF). Forall Γ, X , c , if ([], Γ, X, ∅) c −↠∗ g ′ and

([], Γ, X, ∅) c −↠∗ g ′′, then g ′ = g ′′.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:11

Exploiting the determinism of execution, we de�ne a function F that maps the triple (Γ, X, c) to
its unique execution trace g , if one exists:

F (Γ, X, c) = g if ([], Γ, X, ∅) c −↠∗ g
F (Γ, X, c) = ⊥ otherwise

3.2 Indistinguishability

We will now formalize the notion of indistinguishability for cF programs. Let TapeL denote the
type of tapes that are L bytes long. A distribution over tapes of length L is a function� : TapeL →
[0, 1] such that

∑

C ∈TapeL
� (C) = 1. Intuitively, a distribution over tapes maps each tape to its

corresponding probability. The probability of sampling a particular tape C from a distribution � is
therefore:

Pr[-
$
←− � = C] = � (C)

When � is clear from the context, we simplify Pr[-
$
←− � = C] to Pr[- = C]. We assume, without

the loss of generality, that �Γ and �X are two distinct distributions over independent and identically
distributed tapes of a �nite length L.
We consider a passive attacker model, where an attacker can observe a protocol’s external

interactions, i.e., its network messages, but cannot manipulate them. The attacker also has no
access to the protocol’s internal state. In the context of the current formal development, a passive
attacker can observe the trace g of a program c ’s execution, but none of the other artifacts. To help
us de�ne the likelihood of observing a trace g , we introduce an auxiliary point function 1g that
returns 1 i� its argument is g and 0 otherwise:

1g g
′ def
= if g ′ = g then 1 else 0

Let c −↠∗ g i� there exist tapes Γ and X sampled from �Γ and �X such that ([], Γ, X, ∅) c −↠∗ g .
The probability of a program c manifesting an execution trace g is given by:

Pr[c −↠∗ g] =
∑

Γ∈supp(�Γ)

∑

X ∈supp(�X)
(1g (F (Γ, X, c)) ∗ Pr[-

$
←− �Γ = Γ] ∗ Pr[-

$
←− �X = X]

where supp(�), the support of distribution D, is the set of elements mapped to non-zero probability
by � .

Equipped with the above de�nitions, we now formalize the notion of indistinguishability between
a pair of cF programs c1 and c2.

2

De�nition 3.2 (Indistinguishability). A pair of cF programs c1 and c2 are indistinguishable i�
both programs are equally likely to manifest any given trace g when run against the tapes sampled
from distributions �Γ and �X . Formally:

c1 ≡⟨�Γ,�X ⟩ c2
def
= ∀g . Pr[c1 −↠

∗ g] = Pr[c2 −↠
∗ g]

Assuming �xed distributions �Γ and �X , we omit the subscript and write c1 ≡ c2 to denote
indistinguishability.

4 PROVING INDISTINGUISHABILITY

We now present our proof technique to prove a pair of cF programs to be indistinguishable.
The cornerstone of the technique is Probabilistic Relational Hoare Logic (pRHL) [Barthe et al.
2009], a program logic to reason about the relationship between a pair of sequential probabilistic
programs. As such, the target of pRHL is a sequential imperative language extended with a sampling

2Formulating indistinguishability between programs c1 and c2 is equivalent to formulating indistinguishability between

inputs 0 and 1 for a �xed program c (such as the example protocol in Sec. 2). This is because a program could be inlined

with its inputs (c (0) and c (1)) to create two distinct programs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:12 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

assignment G
$
←− � to sample a value from a distribution � . In contrast, cF programs are concurrent

by de�nition. One way to bridge the gap would be to generalize the relational reasoning of pRHL
to a concurrent setting by pairing it with a concurrent program logic such as Rely-Guarantee.
While possible, this approach is unlikely to result in a practical proof technique as it requires
simultaneous reasoning about observational equivalence, concurrency, and probabilities, each of
which is complicated in its own right. Moreover, we observe that the full generality of a relational
concurrent logic is often not needed in practice to establish the indistinguishability of privacy-
preserving protocols.While concurrent asynchronous communication is integral to the functionality
of such protocols, we observe that the communication can often be synchronized to compute an
equivalent sequential programwithout any loss of generality. The key technique that lets us soundly
do this transformation is based on Lipton’s reduction [Lipton 1975].

4.1 Synchronizing the Asynchronous

Lipton’s reduction provides a principled basis for moving a send operation up to its matching
receive, thereby fusing a pair of asynchronous communication operations into a single synchronous
assignment. In a concurrent execution, Lipton’s reduction identi�es operations as either right
movers or left movers. The idea is that, in a left-to-right linear trace of a concurrent program, a right
(resp. left) mover can be moved right (resp. left) w.r.t the concurrent operations without having an
observable e�ect on the execution state. For instance, in shared memory concurrent programming,
lock operations are generally considered right movers while unlocks are left movers. Lipton’s
theory of movers makes it possible to soundly move the operations of a process closer together
and coalesce them into a single atomic block, thereby reducing the overhead of reasoning about
concurrency.
Similar intuitions apply for sends and recvs in message-passing concurrent programs. For a

given trace, a send can always be soundly synchronized by moving it up to its matching recv

without a�ecting the set of visited states. If this can be done in every possible trace, i.e., if a
send and a recv correspond exclusively to each other in every trace, and if the execution never
blocks or loops between the two operations, then the send-recv pair can be statically synchronized
and replaced with an assignment statement. In [v. Gleissenthall et al. 2019], authors rely on this
observation to soundly synchronize and verify the safety properties of distributed programs. We
apply similar intuitions in the context of cryptographic communication protocols but we adopt a
more conservative approach to synchronization as we are interested in observational equivalence
of traces as opposed to the safety of the states visited.

4.1.1 Soundness of Synchronization. Before we describe how to perform synchronization, we �rst
describe what constitutes a correct synchronization. Let , be the sequential program resulting
from synchronizing a protocol c . Recall that the inputs to c are the tapes Γ and X which consist of
independent, randomly sampled elements. Since , retains the samp operations from c , it requires
the tape Γ. The tape X is however no longer required as synchronization eliminates scheduling
non-determinism. To let the execution of , simulate c , we structure , such that ,(Γ) evaluates
to a trace g that abstracts the set of traces generated by c ; we shall formalize this relationship
shortly. Let ⇓ be the big-step evaluation relation of ,. We write ,(Γ) ⇓ g to mean that the sequential
program ,, when executed on the tape Γ, reduces to a value and generates the trace g . Since the
evaluation of , is deterministic, we treat it as a (partial) function, reusing the F notation from
earlier. A correct synchronization , of c should trivially satisfy the following condition:

Remark ∀Γ, g . F (Γ,,) = g only if there exists a tape X such that F (Γ, X, c) = g .

While the above is a necessary condition for correct synchronization, it is not su�cient as it
only requires , to simulate an execution of c resulting from the scheduling decisions captured by

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:13

a particular tape X . For , to be a correct synchronization of c , it has to simulate executions for
all possible tapes X . If di�erent scheduling decisions result in a di�erent order of communication
actions, then clearly c cannot be reduced to a sequential program , as the latter can only generate
a single trace. Our synchronization rules (Fig. 6; discussed later) result in an error in that case.
However, even when there are no racing communication actions, di�erent scheduling decisions may
result in processes of c consuming di�erent pre�xes of the tape Γ, which might result in multiple
possible traces that di�er in the message values (albeit not the order of the messages). Fortunately,
this is not a problem as di�erent interleavings e�ectively consume di�erent permutations of the
tape Γ, and therefore have the same distribution as Γ. Formally, given a tape X ′ of scheduling
choices, there exists a bijection 5X′ : TapeL → TapeL that maps the initial tape Γ to new tape Γ′

such that F (Γ, X, c) = F (Γ′, X ′, c) = F (Γ,,).3 We capture this intuition as the de�nition of correct
synchronization.

De�nition 4.1 (Soundness of Synchronization). A sequential program, is a sound synchronization
of cF program c if and only if: ∀Γ, g, X . ∃5X . bijection(5X) ∧ (F (Γ,,) = g ⇔ F (5X (Γ), X, c) = g)

Our ultimate aim of synchronization is to prove indistinguishability, which is a probabilistic
property. We therefore require the synchronized and original programs to generate a trace g with
equal probability. We note that this is indeed the case.

Theorem 4.2. If , is a sound synchronization of c , then Pr[, ⇓ g] = Pr[c −↠∗ g].

Proof. Let us consider Pr[, ⇓ g]:

=
∑

Γ∈supp(�Γ)
(1g (F (Γ,,))) ∗ Pr[-

$
←− �Γ = Γ]

=
∑

Γ∈supp(�Γ)

∑

X ∈supp(�X)
(1g (F (5X (Γ), X, c))) ∗ Pr[-

$
←− �Γ = Γ] ∗ Pr[-

$
←− �X = X] (�45 . 4.1)

=
∑

Γ∈supp(�Γ)

∑

X ∈supp(�X)
(1g (F (5X (Γ), X, c))) ∗ Pr[-

$
←− �Γ = 5X (Γ)] ∗ Pr[-

$
←− �X = X]

(

?4A<DC0C8>= >5
8=34?4=34=C;~

B0<?;43 4;4<4=CB

)

=
∑

Γ′∈supp(�Γ)

∑

X ∈supp(�X)
(1g (F (Γ

′, X, c))) ∗ Pr[-
$
←− �Γ = Γ

′] ∗ Pr[-
$
←− �X = X] (A4=0<8=6)

= Pr[c −↠∗ g]

□

As a result of Thm. 4.2 and Def. 3.2, to show c1 ≡ c2, it now su�ces to show ∀g . Pr[,1 ⇓ g] =
Pr[,2 ⇓ g], 8 .4 .,,1 ≡ ,2, where ,1 and ,2 are sound synchronizations of c1 and c2, respectively.
Sec. 4.2 describes a proof technique to establish this equality.

4.1.2 Synchronization Rules. Equipped with the de�nition of a sound synchronization, we present
a system of rewrite rules that gradually rewrite a cF program c to a sound synchronization ,.
The key rewrite rules are given in Fig. 6 using a combination of rewrite rules ({) and multistep
rewrite rules ({∗). The rewrite rules rewrite a program c (or command 28), symbolic network Σ,
and synchronized pre�x , under the predicate Φ to a reduced program c ′ (or command 2 ′8), new
symbolic network Σ

′, and extended synchronized pre�x ,′. The predicate Φ is the predicate that
must hold given the branches that have been selected thus far. It can be used to rule out impossible
executions. When the program is �nally rewritten to unit, then , is a synchronous model of the
program. The multistep rewrite relation is the re�exive transitive closure of the rewrite relation.

To simplify the rewrite rules, we overload the in�x notation :: to represent snoc, appending to the
end of a list, when clear from the context. We also introduce the next function in rule S-Recvwhich,
given an invocation next 9 Σ, selects the �rst message in Σ destined for the process 9 . We overload

3Since the domain and codomain of the bijection are both the set TapeL , this bijection is more precisely a permutation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:14 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

Φ ⊢ (Σ,,, c) { (Σ′,,′, c ′) Φ ⊢ (Σ,,, 28) { (Σ
′,,′, 2 ′8)

(Φ<, :, _, _) ∈ Σ : ≠ 8 ¬(Φ ∧ Φ< =⇒ ⊥)

Φ ⊢ (Σ,,, [send 9 4]8) { ⊥
S-RacingSend

Σ
′
= Σ :: (Φ, 8, 9, 4)

,
′
= , [• ↦→ _ _. trace 8 9 4≫= •] ∀(Φ<, :, _, _) ∈ Σ. : = 8 ∨ (Φ ∧ Φ< =⇒ ⊥)

Φ ⊢ (Σ,,, [send 9 4]8) { (Σ
′,,′, [unit]8)

S-Send

(Φ<, 8, 9, 4) = next 9 Σ Σ
′
= Σ − (Φ<, 8, 9, 4) ,

′
= , [• ↦→ _ _. return 4≫= •]

Φ ⊢ (Σ,,, [recv]8) { (Σ
′,,′, [unit]8)

S-Recv

,
′
= , [• ↦→ _ _. samp≫= •]

Φ ⊢ (Σ,,, [samp]8) { (Σ,,
′, [unit]8)

S-Samp
,
′
= , [• ↦→ _ _. return 4≫= •]

Φ ⊢ (Σ,,, [4]8) { (Σ,,
′, [unit8])

S-Exp

Φ ⊢ (Σ, •, [<]8) { (Σ
′,,8 , [unit]8) ,

′
= , [• ↦→ ,8 [• ↦→ _ 8_G . return () ≫= •]]

Φ ⊢ (Σ,,, [let G =< in 2]8) { (Σ
′,,′, [2 [8_G/G]]8)

S-Let

Φ ⊢ (Σ,,, [2]8) { (Σ
′,,′, [2] ′8)

Φ ⊢ (Σ,,, [2]8 ∥ %) { (Σ
′,,′, [2] ′8 ∥ %)

S-Par

Φ ∧ 4 ⊢ (Σ,,0, [21]8 ∥ %) {
∗ (Σ′

1
,,1, unit) Φ ∧ ¬4 ⊢ (Σ,,0, [22]8 ∥ %) {

∗ (Σ′
2
,,2, unit)

Φ ⊢ (Σ,,, [if 4 then 21 else 22]8 ∥ %) {
∗ (Σ,, [• ↦→ if 4 then ,1 else ,2], unit)

S-If

,
′
= , [• ↦→ _ _. return ()]

Φ ⊢ (Σ,,,

 unit) { (Σ,,′, unit)
S-Done

Φ ⊢ ⊥

Φ ⊢ (Σ,,, c) { (Σ,,, unit)
S-Impossible

Fig. 6. Key rules to derive a synchronization of a cF program. A program can be synchronized if ⊥ can never

be derived from the program. () is wri�en as unit in these rules for readability. ,0 is the initial monadic

program return () ≫= •, where≫= is the monadic bind operation and • represents a hole that is typically
filled by the next rule.

the notation Σ −< to mean removing the �rst element from Σ which matches the message< from
the list. By appending new messages to the end of Σ and reading and removing the �rst message for
a process, we model reliable in-order message delivery using the list Σ. The synchronized process is
built incrementally by �lling in holes (•). We overload the notation , [• ↦→ 5] to represent replacing
the hole • with 5 .

The predicate Φ is updated monotonically by conjuncting it with taken branch conditions. This
is performed by the rule S-If. Intuitively, the S-If rule explores "what-if" scenarios and then emits
an expression that selects between them. More precisely, S-If derives a sub-program that models
the case that the then branch was taken, and a sub-program that models the case that the else
branch was taken. Each of these sub-programs is derived under the current predicate Φ conjuncted
with the branch condition for the then branch or the negation of the branch condition for the else
branch. It then combines these two sub-programs as branches of an if-then-else expression that
branches on the original condition. Unlike the other rewrite rules, S-If is only de�ned in terms
of multi-step rewrites. This formulation reduces the amount of state that must be tracked when
deriving the synchronization. A consequence of using multi-step rewrites is that the rule is de�ned

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:15

on a program 28 ∥ % rather than only on the if-then-else command in isolation to ensure a sound
rewrite. Note that the subsequent program is sound for an arbitrary % because any derivations
relating to it can simply be duplicated in both branches. The S-Impossible is then used to rule out
execution paths that cannot exist due to mutually exclusive branches.
A synchronization , is a monadic functional program. Speci�cally it uses a monad, that we

call the W monad, that tracks both the random tape and the network trace as its hidden state. A
synchronization is derived starting from the empty program ,0 which is simply return () ≫= •.
The model is then incrementally built by �lling in the hole •. The holes are expected to have the
type ′0 → W ′0, the type of the second argument to the monadic bind function≫=. Subsequent
monadic expressions are composed together using binds. When every process that has been run in
parallel has been added to the synchronized model as indicated by unit, the �nal hole in the model
is then �lled using the S-Done rule. The S-Par rule allows for multiple valid synchronizations to
be produced since ∥ is commutative and associative re�ecting the observation that , simulates
an execution of c . The synchronization can be proven sound by verifying the conditions given in
Theorem 4.3.

Only the rules S-Send and S-Samp alter the state tracked by the monad: the network trace and the
random tape. As a result, these rules insert monadic function calls (trace and samp) respectively
to the sequential program ,. The S-Send rule also checks that the send will not race with any
message currently in Σ to avoid unsound rewrites. The S-Recv rule reads and removes the next
message intended for the current process from Σ. The recv is simply replaced with the content
of the message in ,. All expressions are pushed through unchanged using S-Exp. Let bindings
are replaced with the monadic equivalent using binds under rule S-Let. To avoid potential name
clashes between processes, variables are renamed with the process ID prepended.

A synchronization of a program c can be generated by rewriting from an empty symbolic network
and synchronized pre�x. More formally, a synchronization , can be produced from a program c

under initial assumptions Φ0 by performing the multistep rewrite: Φ0 ⊢ ([],,0, c) {
∗ (Σ′,,, unit).

Φ0 can contain initial information such as known axioms on cryptographic primitives. In addition
to producing a synchronization, the rewrite rules are used to ensure that the synchronization is
sound.

Theorem 4.3. , is a sound synchronization of c under assumptions Φ0 if and only if:

Φ0 ⊢ ([],,0, c) {
∗ (Σ′,,, unit), and there does not exist a sequence of rewrites such that

Φ0 ⊢ ([],,0, c) {
∗ ⊥.

The proof of Theorem 4.3 follows from Def. 4.1 and induction over the rewrite rules.
As Theorem 4.3 states, a synchronization is unsound only if ⊥ can be derived using the rules

in Fig. 6. This can only occur if two sends race using the S-RacingSend rule. A send races only
if there could exist another message in the network that is from another process and these two
messages do not contain mutually exclusive predicates. The �rst condition, that sends can only
race if they’re from di�erent processes, captures the observation that sends in the same process are
always executed in program order and therefore do not race given our reliable in-order delivery
semantics. The second condition, that two sends only race if they don’t have mutually exclusive
predicates, allows for �ltering out impossible executions. For example, consider the program in
Fig. 7. This program does not race because if process 8 sends a message then process 9 will not
send a message, and vice versa. In other words, these sends are mutually exclusive because they
branch on opposite conditions. By tracking predicates using Φ, the rules ensure that such impossible
executions can be ruled out using the S-Impossible rewrite rule. We only check for racing sends.
recvs cannot race because they only modify the state for their own process. Similarly, racing samps

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:16 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

do not have an e�ect on the likelihood of emitting a particular trace because they simply consume
di�erent permutations of the tape Γ and therefore are drawn from the same distribution.

[if cond then send j 42 else recv]_i || [if cond then recv else send i 7]_j

Fig. 7. Example protocol that does not race since both processes branch on the same condition.

4.2 Proof System

The rewrite rules in Fig. 6 generate a monadic functional program that, via straightforward trans-
lation to an imperative setting, is amenable to reasoning via relational Hoare logics such as
pRHL [Barthe et al. 2009]. However, functional programs are known to be more suitable for
equational reasoning by virtue of their algebraic nature even when modeling computational ef-
fects [Gibbons and Hinze 2011]. Reasoning with equational axioms to model common cryptographic
assumptions, such as that decryption is the inverse of encryption, is important for further proof
automation. Unfortunately, this equational reasoning is more di�cult when non-deterministic
sampling is interleaved throughout the program. We therefore choose to lift non-determinism to
the front of the program by �rst sampling the tape Γ. We then replace non-deterministic sampling
with deterministic reads of Γ, just like in the operational semantics (Fig. 5). We can then reason
directly about the deterministic su�x as a functional program. Concretely, we interpret the W

monad (the monad in Fig. 6) as the computation (tape * trace) → (option ’a * tape *

trace), which consumes a pre�x of the input tape and appends a su�x to the trace. We thus factor
out non-determinism from the W monad. Let ,(Γ) denote the execution of W computation , on the
tape Γ starting with an empty trace. Also, let , be the functional synchronization generated by the
rules in Fig. 6 for program c . With the above interpretation of W, the correct synchronization of c
is the following program:

let Γ = sample_from �Γ (* Γ
$
←− �Γ *) in ,(Γ)

This program has non-determinism only at the top-level; other sampling calls simply read from the
pre-sampled tape. As a result pRHL only needs to be applied at the top-level, leaving the rest for
straightforward equational reasoning.
Concretely, let c1 and c2 be two cF programs which need to be proven indistinguishable. This

in turn requires proving the following indistinguishability property:

let Γ1 = sample_from �Γ in ,1(Γ1) ≡ let Γ2 = sample_from �Γ in ,2(Γ2)

The top-level expression on both sides is sequential composition (via let), which allows the
application of pRHL ruleR-Seq. The �rst half of sequential composition is sampling from distribution
�Γ on both sides. Applying pRHL rule R-Rand lets us deduce Γ2 = 5 Γ1 for a given bijection 5 on
tapes provided that we can show ∀(Γ ∈ supp(�Γ)).�Γ (Γ) = �Γ (5 Γ). Assuming this can be shown,
Γ2 = 5 Γ1 can be assumed as pre-condition to prove ,1(Γ1) = ,2(Γ2), which completes the proof of
indistinguishability. The proof obligations for indistinguishability are compiled into a proof rule
shown in Fig. 8.

5 IMPLEMENTATION

The indistinguishability property formalized in Sec. 3.2 and proof rules introduced in Sec. 4 are
implemented in our libraryWaldo.Waldo is a library in F* for specifying and proving indistin-
guishability for protocols with a sequential model. In addition, F* supports extraction to OCaml
meaning thatWaldo’s network model, encryption models, and random sampling model can be

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:17

,1 is a sound synchronization of c1 ,2 is a sound synchronization of c2 5 is a bijection

∀(Γ ∈ supp(�Γ)) . �Γ (Γ) = �Γ (5 Γ) ∀(Γ ∈ supp(�Γ)) . ,1 (Γ) = ,2 (5 Γ)

Pr[c1 −↠
∗ g] = Pr[c2 −↠

∗ g]
PrObsEq

Fig. 8. Proof rule for proving the indistinguishability of sequential programs ,1 and ,2

swapped out with concrete implementations to create a functioning OCaml implementation that
can be executed and tested. We give an overview of Waldo’s implementation here but give a more
detailed explanation in the supplementary material.
Waldo expects protocols to be modeled as e�ectful functions of type pub -> priv -> Wald unit,

where pub is a tuple of public arguments that an observer is assumed to know, priv is a tuple of
private arguments that an observer must not learn anything about, and Wald is a computational

e�ect that tracks the network trace and models random sampling from a uniform distribution. Since
Waldo is specialized to a single-process model, it does not need to track the message queue (") and
tape of choices (X) that are part of the state in the formalism from Sec. 3. The only state components
Waldo needs to model are the random tape and network trace. The e�ectful functions Waldo

works on are implementations of the synchronous models derived from a protocol c , following the
rules in Sec. 4, where c is parameterized over tuples of publicly known and private variables.
The Wald e�ect in Waldo is implemented using a monad that operates over a �nite tape of a

�xed length and a list of network traces. Speci�cally, Waldo adapts the random monad introduced
in [Grimm et al. 2018], specializes it to operate on a read-only tape of bytes, and layers on top a
monad to track the network trace. In addition to the standard type constructor, return function,
and bind function, the monad also has a sample function that is used to read from the tape and
a trace function that is used to append a message to the trace. The monadic function sample n is
de�ned so that it returns None, indicating an exception, if there are fewer than n unread bytes in
the tape. Otherwise it returns the next n bytes from the tape while advancing the tape forward
n positions. trace i j m simply appends the tuple (i,j,m) to the network trace to record that the
message m was sent from process i to process j.
PrObsEq, the proof rule given in Fig. 8, is encoded in Waldo as a lemma. However, Waldo

specializes the rule to programs that sample from uniform distributions. This reduces the proof
obligation to simply providing a suitable bijection since ∀(Γ ∈ supp(�Γ)) . �Γ (Γ) = �Γ (5 Γ) holds
for any bijection when �Γ is the uniform distribution. We note that this specialization does not
reduce the usefulness ofWaldo for practical protocols since the secure random-number generators
used by cryptographic primitives aim to sample from a uniform distribution. The lemma takes as
input two monadic Wald computations, a trace, and a bijection on the random tape. The lemma holds
if, for all tapes, running the �rst computation on the tape produces the given trace i� running the
second computation on the bijected tape does, and vice versa. If this is the case, the computations
are equally likely to producing any given trace since there is an equally likely tape that always
results in the computations producing the same trace.
Waldo further encodes the indistinguishability property introduced in Sec. 3.2, but specializes

it to protocols that can be modeled using a deterministic function on random tapes that takes a
set of public arguments and a set of private arguments. For convenience,Waldo provides both a
function that generates an indistinguishability post-condition (indistinguishable_ensures) as well as
a lemma (indistinguishable_lemma) that can be used to prove indistinguishability. For example, Fig. 9
shows the indistinguishability speci�cation of the �xed example OTP protocol, introduced in Sec. 2,
using these convenience functions. The speci�cation states that the otp_proto_indistinguishable is a
lemma parameterized on two tuples of bytes (m and m') which represent the secret messages and on

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:18 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

a trace (trace). The lemma is valid if it ensures that the post-condition (indistinguishable_ensures)
holds for all possible instantiations of its parameters and without any preconditions. The post-
condition speci�cally states that the likelihood of producing the given trace (t) is equivalent when
the program is run with the public argument (())4 and with each of the private arguments (m
and m'). The lemma is then proven using indistinguishable_lemma. It takes the supplied bijection
(bij_otp m m') and attempts to ful�ll the post-condition using the encoding of the PrObsEq rule. To
do this, indistinguishable_lemma rei�es the e�ectful otp_proto function to reason about its monadic
implementation.

(** States that the example OTP protocol guarantees indistinguishability for all

possible pairs of secret messages. *)

let otp_proto_indistinguishable (m: byte & byte) (m': byte & byte) (t: trace)

: Lemma (ensures indistinguishable_ensures otp_proto () m m' t)

= (* bij_otp is provided by Waldo. It permutes the tape as needed to show

indistinguishability when using OTP encryption *)

let bij = (bij_otp m m') in

indistinguishable_lemma otp_proto bij () m m' t

Fig. 9. Indistinguishability lemma and proof in Waldo for the fixed OTP protocol introduced in Sec 2. It

states that the protocol model (otp_proto) run with secret arguments (m or m') and no public arguments (())

is indistinguishable with respect to the trace C . It can be automatically proven using the indistinguishability

lemma and OTP bijection (bij_otp) provided byWaldo.

To successfully prove indistinguishability, it su�ces to show that there is a bijection on the
random tape such that the protocol always produces the same trace for each pair of possible
private arguments. Intuitively, since the tapes are sampled from a uniform distribution, applying
the bijection to any tape produces a tape from the same distribution. Therefore, showing equality
with respect to the bijected tape is su�cient to show equality with respect to the probability
distribution. With the proper bijection, the indistinguishable_lemma is theoretically su�cient to
automatically discharge indistinguishability proofs. We �nd this is often the case in practice,
including for the example in Fig. 9.Waldo’s models of cryptographic primitives come equipped
with suitable bijections for simple uses. Programmers can use these models of cryptographic
primitives out-of-the-box to specify and verify protocols, as done with the bij_otp bijection in Fig.
9.

Waldo speci�cally comes equippedwith amodel of One-Time Pad encryption as well as models of
both symmetric and asymmetric encryption, secure hashing, and secure random number generation.
As discussed in Sec. 2,Waldo models the primitives other than One-Time Pad encryption using
perfect assumptions modulo lengths. For example, as shown in Fig. 10, encryption is modeled
as a function that maps a message m and key k to a randomly sampled ciphertext with the same
length as m. Symmetric decryption is then modeled as the function such that dec (enc m k) k = m.
Programmers can use these cryptographic primitive models out-of-the-box or can introduce their
own models that further relax the assumptionsWaldo makes at the potential cost of automation.

6 CASE STUDY: TLS ENCRYPTED CLIENT HELLO

To show how Waldo helps verify privacy properties in practice, we use Waldo to verify indis-
tinguishability for the Transport Layer Security (TLS) Encrypted Client Hello (ECH) extension

4() in this case means there is no public argument

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:19

let enc (m: bytes) (k: bytes) : Wald (c: bytes{len c == len m}) = sample (len m)

Fig. 10. Model of perfect symmetric encryption in Waldo. Encrypting a plaintext m under a key k simply

returns a bytestring of random bytes as long as the input plaintext. The type of c is a dependent return type

of bytes that is valid only if the length of c is equivalent to the length of m.

[Rescorla et al. 2022] under the assumption that the cryptographic primitives it uses provide per-
fect secrecy. Even under these strong assumptions, we �nd the speci�cation insu�cient to prove
indistinguishability without modi�cations as detailed in Sec. 6.4.

The TLS protocol is used to protect network tra�c for billions of internet users and is best known
for its use in HTTP over TLS (HTTPS). The latest version, TLS 1.3, uses authenticated encryption
to provide protection from both ciphertext tampering and plaintext observation. Unfortunately,
TLS sends unencrypted information during connection establishment, such as the Server Name
Indication (SNI) extension, that can be used to determine the domain a user is connecting to, such as
twitter.com. This information can be used to track users browsing habits or to censor connections
to banned websites. This is not just theoretical, internet censors rely on this information today to
block connections to banned sites [Chai et al. 2019; Gatlan 2019].

The TLS Encrypted Client Hello (ECH) extension [Rescorla et al. 2022] aims to solve this weakness
by encrypting the sensitive parts of the TLS handshake.5 It aims to provide 2 primary security
goals:

(1) Use of ECH does not weaken the security properties of TLS without ECH.
(2) TLS connection establishment to a host with a speci�c ECH and TLS con�guration is indis-

tinguishable from a connection to any other host with the same ECH and TLS con�guration.6

This case study focuses on the second goal, verifying that TLS ECH connection establishments are
indistinguishable.

6.1 TLS and TLS ECH Handshakes

At a high level, TLS works by establishing a shared key between a client and server that is then used
to encrypt future communication. It also negotiates agreement on a particular con�guration to use
for the connection. This connection setup and key exchange happens during the TLS handshake.
TLS 1.3 handshakes start with a ClientHello message from the client to server that contains

information about con�gurations the client supports and the kind of connection the client wants to
establish. In a typical handshake, the server responds with a ServerHello identifying the encryption
con�guration selected for the connection. Both hellos are sent unencrypted. The information in the
hellos is su�cient for both the client and server to derive a key to protect the rest of their handshake.
Thenceforth, the server sends encrypted messages that include information about the selected or
supported parameters for the connection (EncryptedExtensions), the server’s certi�cate proving its
identity (Certi�cate), and information required to validate the certi�cate (Certi�cateVerify). Finally,
both the client and server send a Finished handshake message to conclude the handshake. A typical
TLS 1.3 handshake is shown in Fig. 11a.

ECH works by hiding a set of backend servers behind a known proxy, or client-facing server.7

The client-facing server publishes an ECH con�guration advertising its public key and associated

5The ECH draft mandates that TLS version 1.3 or later must be used. At present that means that only TLS version 1.3 can be

used when using ECH.
6The set of hosts which share the same ECH and TLS con�guration is referred to as the anonymity set.
7ECH allows the client-facing server and backend server to be the same server, but the largest anonymity sets will likely

use separate backend and client-facing servers.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:20 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

ClientHello

+ SNI, extensions

ServerHello

+ non-sensitive extensions

Client
Server

(Twitter)

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

use handshake key

use application key

Application Data

Application Data

(a) Typical TLS 1.3 connection establishment.

ServerHello

+ non-sensitive extensions

Client
Server

(Twitter)
EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

use handshake key

use application key

Proxy

(Cloudflare)

Decrypted ClientHello

+ SNI, extensions

ClientHello

Encrypted ClientHello

+ SNI, extensions

Application Data

Application Data

(b) Typical TLS ECH connection establishment. The

inner ClientHello is shown in filled blue.

Fig. 11. Typical connection establishment for TLS 1.3 both without (11a) and with ECH (11b). The handshake

is shown in blue. Encrypted messages are indicated with a lock icon.

metadata.8 Clients that wish to establish a connection using ECH send an encrypted ClientHello
message meant for the backend server using the published public key for the client-facing server.
This encrypted ClientHello is called the inner ClientHello. The client sends the encrypted payload
within a plaintext ClientHello, called the outer ClientHello, to the client-facing server. The client-
facing server decrypts the inner ClientHello extension, and forwards it on to the backend server. The
handshake then continues as normal between the client and backend server with the client-facing
server forwarding messages between the two. A typical TLS ECH handshake is shown in Fig. 11b.

6.2 Formal Model

TLS ECH connection establishment can be modeled as communication between processes using the
formalism introduced in Sec. 3. There are nominally three processes that communicate: the client,
the proxy, and the server. However, the protocol can be synchronized following the procedure
detailed in Sec. 4. This synchronization is intuitively possible since only one process, either the
client, proxy, or server, can send out a message at any given time. The model is parameterized based
o� shared public arguments (the TLS and ECH con�gurations) as well as private arguments that an
attacker should not be able to di�erentiate (the domain the connection is meant for). Furthermore,
the model relies on cryptographic primitives, including encryption and a secure hash function.
Both are assumed to be perfect modulo the length assumptions: the former is assumed to generate
a ciphertext of same length as the plaintext and the latter is assumed to generate a hash of �xed
length. These assumptions allow for evaluating if the protocol itself provides the guarantees it aims
to provide as long as the cryptographic primitives it uses are su�ciently strong.

6.3 Implementation in F*

The synchronized model is implemented in F*, using Waldo, as an e�ectful function ech_handshake

that has the type: configs -> ech_priv_args -> Wald unit. The function �rst takes a con�guration
argument that contains all the con�guration information needed for both the client and server
including the client’s TLS con�guration, the client’s ECH-speci�c con�guration, the server’s TLS
con�guration, and the server’s ECH-speci�c con�guration. It then takes a tuple of private arguments
that include the name of the server the client wants to talk to and the server’s certi�cate.

8The manner of publishing is out-of-scope of ECH’s design but could be distributed through DNS [Schwartz et al. 2021].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:21

Indistinguishability for TLS ECH is speci�ed using the indistinguishable_ensures proposition and
veri�ed using the indistinguishable_lemma lemma provided byWaldo. The bijectionWaldo provides
for perfect encryption can be used out-of-the-box for this model. The bijection and lemma are
su�cient for Z3 to discharge the proof if the protocol has no bugs.

6.4 Formal Verification Results

Unfortunately, the TLS ECH indistinguishability lemma fails to prove without preconditions, even
under the assumed use of ideal cryptographic primitives. The model requires several additional
preconditions before the indistinguishability lemma can prove. The preconditions represent as-
sumptions that could be bugs with the speci�cation. In particular, the following assumptions are
needed:
(assumption already in spec) The inner ClientHello messages are padded out to the same length.

If the inner ClientHello messages are not padded out to the same length, they can leak information
about which server the message is going to. In particular, the Server Name Indication �eld varies
in length between servers for di�erent domains. This is a known potential weakness and the TLS
ECH speci�cation provides a padding scheme that SHOULD be followed [Rescorla et al. 2022]. We
therefore consider this assumption adequately covered by the speci�cation.
(missing from spec) The extensions in plaintext messages from the server, including ServerHello

and HelloRetryRequest, are always placed in the same order across all servers in the anonymity set.

Neither the TLS 1.3 speci�cation nor the TLS ECH speci�cation specify an order in which extensions
should appear in messages. The ServerHello and HelloRetryRequest messages are sent unencrypted
so the order in which they present extensions can be seen by an external observer. This means that
all servers in an anonymity set must send their extensions in the same order, otherwise they leak
which subset of the anonymity set they are in. Since this is addressed by neither the TLS 1.3 nor
the TLS ECH spec, we consider this an issue that should be addressed.
(inadequately addressed in spec) The EncryptedExtensions messages are padded out to the same

lengths. The same is also true for the Certi�cate and Certi�cateVerify messages. The encrypted mes-
sages sent back by the server, including the EncryptedExtensions, Certi�cate, and Certi�cateVerify
messages, must also be padded out to the same length. The Certi�cate message is especially impor-
tant to pad since the certi�cates for di�erent sites tend to vary dramatically. For instance, a TLS 1.3
connection to google returned a Certi�cate message 6343 bytes in length, whereas a connection to
twitter returned a Certi�cate message 2966 bytes in length. The need to pad these messages out is
only addressed in the speci�cation with the text: "In addition to padding ClientHelloInner, clients
and servers will also need to pad all other handshake messages that have sensitive-length �elds.
For example, if a client proposes ALPN values in ClientHelloInner, the server-selected value will be
returned in an EncryptedExtension, so that handshake message also needs to be padded using TLS
record layer padding" [Rescorla et al. 2022]. We believe the current language is inadequate given
the ease with which these messages could identify the server. We therefore recommend that the
speci�cation describe the leakage that can occur if these messages are not padded and state that
these messages SHOULD be padded.

With these assumptions added, the indistinguishability lemma successfully discharges. Therefore,
the model shows that TLS ECH provides indistinguishability for connection establishment against
a passive observer as long as the protocol is modi�ed so that the assumptions stated above hold.
Importantly, our model uncovered required assumptions, such as the same extension ordering
requirement for plaintext server messages, that were not captured by previous models [Bhargavan
et al. 2022] that used the symbolic model for veri�cation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:22 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

7 CASE STUDY: PRIVATE INFORMATION RETRIEVAL

In addition to using Waldo to verify indistinguishability for TLS ECH, it can also be used to verify
similar privacy properties. In this section, we verify<−1 privacy for a Private Information Retrieval
(PIR) scheme. Private Information Retrieval is the problem of querying information from a set
of databases containing identical data, without leaking which piece of data the client requests.
PIR protocols are used in or strongly related to several other privacy-related protocols including
oblivious transfer [Di Crescenzo et al. 2000; Gertner et al. 1998], instance hiding [Beaver and
Feigenbaum 1990], multiparty computation [Beimel et al. 2012], secret sharing [Beimel et al. 2012;
Shamir 1979], homomorphic encryption [Ishai et al. 2005], and collision-resistant hashing [Ishai
et al. 2005]. Though indistinguishability is only proven here for one PIR scheme, the same approach
can be extended to other information theoretic schemes and protocols that aim to provide privacy
guarantees.

Here we verify a generalization of the two-server scheme to presented in [Chor et al. 1998]. The
generalization extends the scheme to< servers and guarantees perfect privacy as long as at least
one server does not collude with the others (called< − 1 privacy). The< servers each have a copy
of an =-bit database 3 . The client wants to learn what the 8-th bit of 3 is set to, without leaking
the index 8 they’re interested in. As shown in Fig. 12, the client sends a series of n-bit queries to
the servers. Each server responds with a single bit. They determine this bit by bitwise and-ing (∧)
the query they receive with 3 , then xor-ing (⊕8) the resulting bits together. The �rst< − 1 queries
the user sends are randomly sampled from the uniform distribution over =-bit bitstrings. The �nal
query is constructed by bitwise xor-ing (⊕) the previous queries with the query the client would
send if they didn’t need privacy (@ = 2

8). The client can then reconstruct the 8-th bit of 3 by xor-ing
all the responses together.

7.1 Formal Model

Client

Server A

Server B

Server C

⨁#(!! ∧ %)
I want to

know bit ' of

%, so ! = 2#

⨁
#
((!⨁!!⨁!") ∧ %)

Random Query !!

Query !⨁!!⨁!"

⨁
#
(!" ∧ %)

Random Query !"

Fig. 12. Simple Private Information Retrieval proto-

col with< = 3 servers, each with a copy of the =-bit

database 3 . The client wants to learn the entry in 3

corresponding to the bit set in @. The user sends out

< − 1 random =-bit queries, and a final query derived

from the previous queries. The servers each respond

with a single bit. The client recovers the desired bit of

3 by XOR-ing the responses together.

The PIR protocol is modeled as communica-
tion between< + 1 processes where< of the
processes are identical modulo the process ID
and represent the servers, and the remaining
process represents the client. The traces end
up alternating between queries and responses.
Since all the responses are independent and all
the servers are identical modulo the process ID,
the order in which each response is received is
irrelevant due to symmetry. The< − 1 privacy
property is formulated as indistinguishability
when the trace is missing a single query and
associated response.

7.2 Implementation in F*

Waldo is again used to specify and verify this
protocol. First a pir function is de�ned to model
the protocol. The function has the signature:

(d: lbits n) -> (m: nat{m > 1}) ->

(i: nat{i < n}) -> WaldBit bit.
This function takes an implicit argument for

=, a database of = bits, the number of servers<,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:23

and the 8-th bit of 3 the client wants to learn. It then records the queries that would be sent to each
server along with the responses the servers would send back and puts them into a list to create
the trace. WaldBit is the same e�ect as Wald, except it reads random bits from a tape of bits where
Wald reads random bytes from a tape of bytes. The �rst< − 1 queries are each created by randomly
sampling = bits from the random tape. The �nal query is determined by xor-ing the �rst< − 1
queries together with the true query (the =-bit representation of 28). Each response is computed by
bitwise and-ing the query with 3 and then xor-ing all the resulting bits together to get a single
bit. The pir function then returns the 8-th bit of 3 , computed by xor-ing all the server responses
together.
Proving < − 1 privacy for this protocol requires reasoning about two di�erent scenarios. In

the case that the last query and response are omitted from the trace, every query in the trace is
randomly generated. The identity function is a su�cient bijection to prove indistinguishability in
this case. In the case that a di�erent query and response are omitted from the trace, the last query
in the trace is not randomly generated but instead is created by xor-ing previous queries together.
Unfortunately the identity bijection does not su�ce in this case. Proving indistinguishability for
this case then boils down to showing that there is a bijection that maps the last query for the �rst
run of the program (@1 ⊕ A@1 ⊕ · · · ⊕ A@<−1) to the last query for the other run of the program
(@2 ⊕ A@1 ⊕ · · · ⊕ A@<−1) where @1 and @2 are the di�erent true queries for each program and A@8
indicates the 8-th random query. Suppose, without loss of generality, the �rst query and response
are picked to omit from the trace. This means excluding A@1 and its response from the trace. If the
bijection _ C . @2 ⊕ @1 ⊕ C is used on the portion of the tape that A@1 is sampled from and the bijected
tape is used only when running the second program, then the last query for the second program
would be @2 ⊕ (@2 ⊕ @1 ⊕ A@1) ⊕ · · · ⊕ A@<−1 which is equivalent to @1 ⊕ A@1 ⊕ · · · ⊕ A@<−1, the last
query from the �rst program. This bijection can then be generalized when omitting the 8-th query
and response to instead be _ C8 . @1 ⊕ @2 ⊕ C8 where C8 is the portion of the tape used to sample A@8 .

The top-level<−1 privacy lemma can then be proven by case analysis using these two bijections.
It is proven automatically using the indistinguishability lemma from Waldo along with properties
of XOR and AND. The proof con�rms that the scheme introduced in [Chor et al. 1998] provides
<−1 privacy. Furthermore, it shows thatWaldo can be used for reasoning about privacy properties
beyond simple indistinguishability.

8 RELATED WORK

Many previous works formulate and verify properties similar to the indistinguishability properties
we formulate and verify. These properties include secrecy, observational equivalence, and di�-
equivalence in the symbolic model, indistinguishability in the computational model, and non-
interference. Related work for each of these topics is brie�y covered below.

Symbolic Cryptographic Protocol Veri�cation. Cryptographic protocol veri�cation is typically
done in either the symbolic model or the computational model. In the symbolic model, also called
the Dolev-Yao model [Dolev and Yao 1983], messages and keys are represented as symbolic terms
while the protocol is represented using functions along with an equational theory on those terms
and functions that model what information an attacker can derive. This symbolic model models an
active attacker that is strictly more powerful than the passive attacker we assume, yet it does not
implicitly model the potential leakage of partial information, such as the length of a message, that
can reduce privacy guarantees. This leads to the situation described in Sec. 1 where a protocol can
verify but still leak identifying information.

ProVerif [Blanchet et al. 2016] and Tamarin [Meier et al. 2013] are the most prominent proto-
col veri�cation tools that work in the symbolic model. DY* [Bhargavan et al. 2021] is another

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:24 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

framework based on the symbolic model that is written in F* likeWaldo. However, DY* has the
same limitations in precision as other symbolic model tools and, unlike ProVerif and Tamarin,
does not support reasoning about observational equivalence. These tools have been used to verify
real-world protocols including the Signal protocol [Bhargavan et al. 2021; Kobeissi et al. 2017], TLS
1.3 [Bhargavan et al. 2017; Cremers et al. 2017, 2016], Noise protocols [Girol et al. 2020; Kobeissi
et al. 2019], the 5G authentication key exchange protocol [Basin et al. 2018], the Neuchâtel and
Norwegian voting protocols [Cortier et al. 2018; Cortier and Wiedling 2017], and the same TLS
ECH extension modeled in this paper [Bhargavan et al. 2022]. Of these, only the 5G model [Basin
et al. 2018], Noise Tamarin model [Girol et al. 2020], voting protocols [Cortier et al. 2018; Cortier
and Wiedling 2017], and TLS ECH model [Bhargavan et al. 2022] consider privacy properties. Both
the 5G and TLS ECH models explicitly state they exclude �ner-grained information like message
length from their models. Furthermore, the 5G model only checks if an adversary could fully learn
the anonymous information. The TLS ECH model does checks if an adversary could partially learn
the anonymous information through using di�-equivalence properties, but the model still excludes
leakage of �ner-grained information like message length that can trivially violate these properties.
The Noise model and voting models similarly don’t consider �ne-grained information leakage
despite verifying observational equivalence or di�-equivalence. Though it is possible to model
�ne-grained information leakage in the symbolic model, it must be done explicitly. It is therefore
easy for users to incorrectly believe that their protocol guarantees anonymity when veri�ed in
the symbolic model. In contrast, our approach is more precise and allows for detecting leakage
of additional partial information without explicitly modeling this partial information. It is this
capability that allows us to detect that padding and ordering di�erences in TLS ECH can leak which
server a user is talking to.

Computational Cryptographic Protocol Veri�cation. In contrast to the symbolic model, tools in
the computational model do model �ne-grained partial information leakage. They represent mes-
sages as bitstrings and protocols as probabilistic functions on those bitstrings. The computational
model is strictly more precise than the symbolic model, but also tends to be harder to verify. The
ability to reason about both approximate and quantitative forms of indistinguishability makes
the computational model tools more expressive than our approach which currently only allows
reasoning about perfect indistinguishability properties between probabilistic programs that sample
from a uniform distribution. Unfortunately, writing and verifying protocols in the computational
model often requires manual proof e�ort and experience with cryptographic proofs. In contrast, our
approach, in which a protocol is modeled as a deterministic monadic function, allows for a direct
speci�cation style that is much closer to the implementations and pseudocode protocol designers
already write. Our approach is also able to reduce required manual proof e�orts by sequentializing
concurrent protocols and using perfect encryption assumptions.
CryptoVerif [Blanchet 2008] and EasyCrypt [Barthe et al. 2011] are the most prominent veri�-

cation tools in the computational model. They have been used to verify properties for real-world
cryptographic protocols including TLS 1.3 [Bhargavan et al. 2017], the Signal protocol [Kobeissi et al.
2017], the WireGuard protocol [Lipp et al. 2019], and the AWS Key Management Service [Almeida
et al. 2019]. Additionally, F* and F7 were used to verify parts of TLS 1.2 and 1.3 [Bhargavan et al.
2013; Delignat-Lavaud et al. 2017]. All of these previous works prove some form of indistinguisha-
bility, but the computational proofs are all game-based and require careful framing and manual
e�ort. Several of these works [Bhargavan et al. 2017; Kobeissi et al. 2017] leverage both CryptoVerif
and ProVerif to combine guarantees from the more labor-intensive proofs about cryptographic
primitives with guarantees from more automated proofs in the symbolic model. Our approach could
likewise be used to connect higher-level proofs with lower-level guarantees from the computational

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

Verifying Indistinguishability of Privacy-Preserving Protocols 273:25

model. More information on previous work in both the symbolic and computational models can be
found in a recent survey on cryptographic protocol veri�cation [Barbosa et al. 2021].

Non-interference. Our speci�cation of indistinguishability is similar in spirit to the probabilistic
non-interference property as de�ned in [O’Neill et al. 2006], which is derived from the original
formulation introduced in [Gray III 1992]. Non-interference properties typically specify that secret
inputs (denoted as inputs with a high label) have no observable e�ect that an unprivileged observer
could detect (as determined by outputs with a low label). Probabilistic non-interference generalizes
non-interference to include programs with probabilistic choices. The output traces in our models
are assumed to be the only observable e�ects an observer could detect from probabilistic processes,
so our indistinguishability property is very similar. However, unlike non-interference properties
our indistinguishability property has no notion of labels. Instead we assume every the network
trace is observable. Additionally, though we parameterize indistinguishability on common public
inputs and potentially di�ering private inputs, which are essentially equivalent to low and high
inputs respectively, our formalism is �exible and does not require this speci�c parameterization.
Finally, our approach to ensuring indistinguishability is very di�erent from the typical approach
to ensuring non-interference via information �ow control. Information �ow control ensures that
no private information ever �ows into public outputs unless it �rst goes through appropriate
declassi�cation. This is often enforced through a type system. The protocols we consider require
sending public information that is derived from private information (e.g. the encrypted message).
Previous work handles this restriction by modeling encryption as declassi�cation [Abadi 1999;
Broberg et al. 2013; Fournet and Rezk 2008; Kozyri et al. 2022; Laud 2003; Li and Zdancewic 2010;
Smith and Alpízar 2006; Volpano 2000; Volpano and Smith 2000; Waye et al. 2017]. However,
declassi�cation must explicitly take into account implicit information leakage such as message
length and order [Backes and P�tzmann 2002]. This is the same limitation present in the existing
symbolic models of cryptographic veri�cation that allows for users to implicitly leak information
that violates indistinguishability. See [Kozyri et al. 2022] for a survey of information �ow properties
and see [Sabelfeld and Sands 2005] for a survey on declassi�cation in information �ow. In contrast,
we reason about the probabilities of sending any particular message using rules derived from
probabilistic Relational Hoare Logic (pRHL) [Barthe et al. 2009]. Our approach allows for �ner-
grained reasoning about information in the traces of messages (such as the lengths of the messages)
without the protocol designer needing to specify and use appropriate declassi�cation schemes
that explicitly account for possible information leakage channels. Instead, the user provides a
suitable bijection on tapes to show that each determinized run of a program with a private input
corresponds to an equivalent determinized run of the program for all other private inputs.

9 CONCLUSION

Though existing methods in both the symbolic and computational models have been developed
to verify privacy-preserving protocols, they are either not precise enough to capture information
leakage that compromises privacy, require cryptographic expertise, or require heavy manual proof
e�ort. In this paper we provide an alternate approach that adapts elements of both models as well
as insights from the distributed systems veri�cation community. Insights from Lipton’s reduction
allow for modeling concurrent protocols as simpler synchronous ones that are easier to verify.
Reasoning about bytestrings using pRHL allows for more precise reasoning than in the symbolic
model while perfect encryption assumptions allow for easier veri�cation than in the computational
model. As a result, our approach and implementation provide a precise yet accessible method to
specify and verify privacy-preserving protocols including TLS ECH and PIR.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

273:26 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful comments and suggestions. We also thank
Jack Wampler for discussions about the TLS Encrypted Client Hello extension, as well as Nikhil
Swamy, Tahina Ramananandro, and Guido Martínez for their guidance on F* and preliminary
feedback on this work.

REFERENCES

Martin Abadi. 1999. Secrecy by typing in security protocols. Journal of the ACM (JACM) 46, 5 (1999), 749–786. https:

//doi.org/10.1145/324133.324266

Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In 2013

IEEE Symposium on Security and Privacy. 526–540. https://doi.org/10.1109/SP.2013.42

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie Cohen, Benjamin Gregoire, Vitor Pereira,

Bernardo Portela, Pierre-Yves Strub, and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS Key

Management Service. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS

’19). Association for Computing Machinery, New York, NY, USA, 63–78. https://doi.org/10.1145/3319535.3354228

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David

Adrian, J Alex Halderman, Viktor Dukhovni, et al. 2016. DROWN: Breaking TLS using sslv2. In 25th USENIX Security

Symposium (USENIX Security 16). 689–706.

Michael Backes and Birgit P�tzmann. 2002. Computational Probabilistic Non-interference. In Computer Security — ESORICS

2002, Dieter Gollmann, Günther Karjoth, and Michael Waidner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

1–23. https://doi.org/10.1007/s10207-004-0039-7

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021. SoK:

Computer-Aided Cryptography. In 2021 IEEE Symposium on Security and Privacy (SP). 777–795. https://doi.org/10.1109/

SP40001.2021.00008

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs for

the Working Cryptographer. In Advances in Cryptology – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 71–90. https://doi.org/10.1007/978-3-642-22792-9_5

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal Certi�cation of Code-Based Cryptographic

Proofs. SIGPLAN Not. 44, 1 (jan 2009), 90–101. https://doi.org/10.1145/1594834.1480894

David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and Vincent Stettler. 2018. A Formal Analysis of 5G

Authentication. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18).

Association for Computing Machinery, New York, NY, USA, 1383–1396. https://doi.org/10.1145/3243734.3243846

Donald Beaver and Joan Feigenbaum. 1990. Hiding instances in multioracle queries. In STACS 90, Christian Cho�rut and

Thomas Lengauer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 37–48. https://doi.org/10.1007/3-540-52282-4_30

Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. 2012. Share Conversion and Private Information Retrieval. In

2012 IEEE 27th Conference on Computational Complexity. 258–268. https://doi.org/10.1109/CCC.2012.23

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive

Constructions (1st ed.). Springer Publishing Company, Incorporated.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo

Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. 2017. A Messy State of the Union: Taming the Composite State

Machines of TLS. Commun. ACM 60, 2 (jan 2017), 99–107. https://doi.org/10.1145/3023357

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021. DY★: A Modular Symbolic Veri�cation Framework for Executable Cryptographic Protocol Code. In 2021

IEEE European Symposium on Security and Privacy (EuroS&P). 523–542. https://doi.org/10.1109/EuroSP51992.2021.00042

Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Veri�ed models and reference implementations

for the TLS 1.3 standard candidate. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 483–502. https:

//doi.org/10.1109/SP.2017.26

Karthikeyan Bhargavan, Vincent Cheval, and Christopher Wood. 2022. A Symbolic Analysis of Privacy for TLS 1.3 with

Encrypted Client Hello. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’22). Association for Computing Machinery, New York, NY, USA, 365–379. https://doi.org/10.1145/3548606.3559360

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. 2013. Implementing

TLS with Veri�ed Cryptographic Security. In 2013 IEEE Symposium on Security and Privacy. 445–459. https://doi.org/10.

1109/SP.2013.37

Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre Yves Strub. 2014. Triple

Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. In 2014 IEEE Symposium on Security and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

https://doi.org/10.1145/324133.324266
https://doi.org/10.1145/324133.324266
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/3319535.3354228
https://doi.org/10.1007/s10207-004-0039-7
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1145/1594834.1480894
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1007/3-540-52282-4_30
https://doi.org/10.1109/CCC.2012.23
https://doi.org/10.1145/3023357
https://doi.org/10.1109/EuroSP51992.2021.00042
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1145/3548606.3559360
https://doi.org/10.1109/SP.2013.37
https://doi.org/10.1109/SP.2013.37

Verifying Indistinguishability of Privacy-Preserving Protocols 273:27

Privacy. 98–113. https://doi.org/10.1109/SP.2014.14

Bruno Blanchet. 2008. A Computationally Sound Mechanized Prover for Security Protocols. IEEE Transactions on Dependable

and Secure Computing 5, 4 (2008), 193–207. https://doi.org/10.1109/TDSC.2007.1005

Bruno Blanchet et al. 2016. Modeling and verifying security protocols with the applied pi calculus and ProVerif. Foundations

and Trends® in Privacy and Security 1, 1-2 (2016), 1–135. https://doi.org/10.1561/3300000004

Niklas Broberg, Bart van Delft, and David Sands. 2013. Paragon for practical programming with information-�ow control.

In Asian Symposium on Programming Languages and Systems. Springer, 217–232. https://doi.org/10.1007/978-3-319-

03542-0_16

Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. 2019. On the importance of encrypted-SNI (ESNI) to censorship

circumvention. In 9th USENIX Workshop on Free and Open Communications on the Internet (FOCI 19).

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private Information Retrieval. J. ACM 45, 6 (nov

1998), 965–981. https://doi.org/10.1145/293347.293350

Veronique Cortier, David Galindo, and Mathieu Turuani. 2018. A Formal Analysis of the Neuchatel e-Voting Protocol. In

2018 IEEE European Symposium on Security and Privacy (EuroS&P). 430–442. https://doi.org/10.1109/EuroSP.2018.00037

Véronique Cortier and Cyrille Wiedling. 2017. A formal analysis of the Norwegian E-voting protocol. Journal of Computer

Security 25, 1 (2017), 21–57. https://doi.org/10.3233/JCS-15777

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. 2017. A comprehensive symbolic

analysis of TLS 1.3. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

1773–1788. https://doi.org/10.1145/3133956.3134063

Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Automated analysis and veri�cation of TLS 1.3:

0-RTT, resumption and delayed authentication. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 470–485.

https://doi.org/10.1109/SP.2016.35

Antoine Delignat-Lavaud, Cedric Fournet, Markulf Kohlweiss, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago

Zanella-Beguelin, Karthikeyan Bhargavan, Jianyang Pan, and Jean Karim Zinzindohoue. 2017. Implementing and Proving

the TLS 1.3 Record Layer. In 2017 IEEE Symposium on Security and Privacy (SP). 463–482. https://doi.org/10.1109/SP.2017.58

Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. 2000. Single Database Private Information Retrieval Implies

Oblivious Transfer. In Advances in Cryptology — EUROCRYPT 2000, Bart Preneel (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 122–138. https://doi.org/10.1007/3-540-45539-6_10

Danny Dolev and Andrew Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory 29, 2

(1983), 198–208. https://doi.org/10.1109/TIT.1983.1056650

Cédric Fournet and Tamara Rezk. 2008. Cryptographically sound implementations for typed information-�ow security.

ACM SIGPLAN Notices 43, 1 (2008), 323–335. https://doi.org/10.1145/1328897.1328478

Sergiu Gatlan. 2019. South Korea is Censoring the Internet by Snooping on SNI Tra�c. Bleeping Computer (13 Feb

2019). https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-

tra�c/

Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. 1998. Protecting data privacy in private information retrieval

schemes. In Proceedings of the thirtieth annual ACM symposium on Theory of computing. 151–160. https://doi.org/10.

1145/276698.276723

Jeremy Gibbons and Ralf Hinze. 2011. Just Do It: Simple Monadic Equational Reasoning. SIGPLAN Not. 46, 9 (sep 2011),

2–14. https://doi.org/10.1145/2034574.2034777

Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers, and David Basin. 2020. A Spectral Analysis of

Noise: A Comprehensive, Automated, Formal Analysis of Di�e-Hellman Protocols. In 29th USENIX Security Symposium

(USENIX Security 20). 1857–1874.

James W Gray III. 1992. Toward a mathematical foundation for information �ow security. Journal of Computer Security 1,

3-4 (1992), 255–294. https://doi.org/10.3233/JCS-1992-13-405

Niklas Grimm, Kenji Maillard, Cédric Fournet, Cătălin Hriţcu, Matteo Ma�ei, Jonathan Protzenko, Tahina Ramananandro,

Aseem Rastogi, Nikhil Swamy, and Santiago Zanella-Béguelin. 2018. A monadic framework for relational veri�cation:

applied to information security, program equivalence, and optimizations. In Proceedings of the 7th ACM SIGPLAN

International Conference on Certi�ed Programs and Proofs. 130–145. https://doi.org/10.1145/3167090

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2005. Su�cient Conditions for Collision-Resistant Hashing. In Theory of

Cryptography, Joe Kilian (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 445–456. https://doi.org/10.1007/978-3-

540-30576-7_24

Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated veri�cation for secure messaging protocols

and their implementations: A symbolic and computational approach. In 2017 IEEE European symposium on security and

privacy (EuroS&P). IEEE, 435–450. https://doi.org/10.1109/EuroSP.2017.38

Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. 2019. Noise Explorer: Fully automated modeling and

veri�cation for arbitrary Noise protocols. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/TDSC.2007.1005
https://doi.org/10.1561/3300000004
https://doi.org/10.1007/978-3-319-03542-0_16
https://doi.org/10.1007/978-3-319-03542-0_16
https://doi.org/10.1145/293347.293350
https://doi.org/10.1109/EuroSP.2018.00037
https://doi.org/10.3233/JCS-15777
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1007/3-540-45539-6_10
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/1328897.1328478
https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
https://doi.org/10.1145/276698.276723
https://doi.org/10.1145/276698.276723
https://doi.org/10.1145/2034574.2034777
https://doi.org/10.3233/JCS-1992-13-405
https://doi.org/10.1145/3167090
https://doi.org/10.1007/978-3-540-30576-7_24
https://doi.org/10.1007/978-3-540-30576-7_24
https://doi.org/10.1109/EuroSP.2017.38

273:28 Kirby Linvill, Gowtham Kaki, and Eric Wustrow

356–370. https://doi.org/10.1109/EuroSP.2019.00034

Elisavet Kozyri, Stephen Chong, and Andrew C. Myers. 2022. Expressing Information Flow Properties. Foundations and

Trends® in Privacy and Security 3, 1 (2022), 1–102. https://doi.org/10.1561/3300000008

Peeter Laud. 2003. Handling encryption in an analysis for secure information �ow. In European Symposium on Programming.

Springer, 159–173. https://doi.org/10.1007/3-540-36575-3_12

Peng Li and Steve Zdancewic. 2010. Arrows for secure information �ow. Theoretical computer science 411, 19 (2010),

1974–1994. https://doi.org/10.1016/j.tcs.2010.01.025

Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. 2019. A Mechanised Cryptographic Proof of the WireGuard

Virtual Private Network Protocol. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). 231–246.

https://doi.org/10.1109/EuroSP.2019.00026

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (dec 1975),

717–721. https://doi.org/10.1145/361227.361234

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN prover for the symbolic analysis of

security protocols. In International conference on computer aided veri�cation. Springer, 696–701. https://doi.org/10.1007/

978-3-642-39799-8_48

Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites: exploiting the SSL 3.0 fallback. Security

Advisory 21 (2014), 34–58.

K.R. O’Neill, M.R. Clarkson, and S. Chong. 2006. Information-�ow security for interactive programs. In 19th IEEE Computer

Security Foundations Workshop (CSFW’06). 12 pp.–201. https://doi.org/10.1109/CSFW.2006.16

E. Rescorla, K. Oku, N. Sullivan, and C.A. Wood. 2022. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-15. IETF

Secretariat. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15

Juliano Rizzo and Thai Duong. 2012. The CRIME Attack. In EKOparty Security Conference.

A. Sabelfeld and D. Sands. 2005. Dimensions and principles of declassi�cation. In 18th IEEE Computer Security Foundations

Workshop (CSFW’05). 255–269. https://doi.org/10.1109/CSFW.2005.15

B. Schwartz, M. Bishop, and E. Nygren. 2021. Service binding and parameter speci�cation via the DNS (DNS SVCB and HTTPS

RRs). Internet-Draft draft-ietf-dnsop-svcb-https-08. IETF Secretariat. https://datatracker.ietf.org/doc/html/draft-ietf-

dnsop-svcb-https-08

Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979), 612–613. https://doi.org/10.1145/359168.359176

Geo�rey Smith and Rafael Alpízar. 2006. Secure information �ow with random assignment and encryption. In Proceedings

of the fourth ACM workshop on Formal methods in security. 33–44. https://doi.org/10.1145/1180337.1180341

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al. 2016. Dependent types and multi-monadic e�ects in F*.

In Proceedings of the 43rd annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 256–270.

https://doi.org/10.1145/2837614.2837655

The Coq Development Team. 2023. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.1003420

U.S. CIO Council. 2016. HTTPS. https://https.cio.gov/. [Online; accessed 31-March-2023].

Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend Synchrony:

Synchronous Veri�cation of Asynchronous Distributed Programs. Proc. ACM Program. Lang. 3, POPL, Article 59 (jan

2019), 30 pages. https://doi.org/10.1145/3290372

D. Volpano. 2000. Secure introduction of one-way functions. In Proceedings 13th IEEE Computer Security Foundations

Workshop. CSFW-13. 246–254. https://doi.org/10.1109/CSFW.2000.856941

Dennis Volpano and Geo�rey Smith. 2000. Verifying secrets and relative secrecy. In Proceedings of the 27th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 268–276. https://doi.org/10.1145/325694.325729

W3C Technical Architecture Group. 2021. Web HTTPS. https://www.w3.org/2001/tag/doc/web-https. [Online; accessed

31-March-2023].

Lucas Waye, Pablo Buiras, Owen Arden, Alejandro Russo, and Stephen Chong. 2017. Cryptographically secure information

�ow control on key-value stores. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. 1893–1907. https://doi.org/10.1145/3133956.3134036

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 273. Publication date: October 2023.

https://doi.org/10.1109/EuroSP.2019.00034
https://doi.org/10.1561/3300000008
https://doi.org/10.1007/3-540-36575-3_12
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1109/EuroSP.2019.00026
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/CSFW.2006.16
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://doi.org/10.1109/CSFW.2005.15
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-08
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-08
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/1180337.1180341
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.5281/zenodo.1003420
https://https.cio.gov/
https://doi.org/10.1145/3290372
https://doi.org/10.1109/CSFW.2000.856941
https://doi.org/10.1145/325694.325729
https://www.w3.org/2001/tag/doc/web-https
https://doi.org/10.1145/3133956.3134036

	Abstract
	1 Introduction
	2 Key Ideas
	3 Formalism
	3.1 w: Syntax and Operational Semantics
	3.2 Indistinguishability

	4 Proving Indistinguishability
	4.1 Synchronizing the Asynchronous
	4.2 Proof System

	5 Implementation
	6 Case Study: TLS Encrypted Client Hello
	6.1 TLS and TLS ECH Handshakes
	6.2 Formal Model
	6.3 Implementation in F*
	6.4 Formal Verification Results

	7 Case Study: Private Information Retrieval
	7.1 Formal Model
	7.2 Implementation in F*

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

